Highly efficient nonrigid motion‐corrected 3D whole‐heart coronary vessel wall imaging
نویسندگان
چکیده
PURPOSE To develop a respiratory motion correction framework to accelerate free-breathing three-dimensional (3D) whole-heart coronary lumen and coronary vessel wall MRI. METHODS We developed a 3D flow-independent approach for vessel wall imaging based on the subtraction of data with and without T2-preparation prepulses acquired interleaved with image navigators. The proposed method corrects both datasets to the same respiratory position using beat-to-beat translation and bin-to-bin nonrigid corrections, producing coregistered, motion-corrected coronary lumen and coronary vessel wall images. The proposed method was studied in 10 healthy subjects and was compared with beat-to-beat translational correction (TC) and no motion correction for the left and right coronary arteries. Additionally, the coronary lumen images were compared with a 6-mm diaphragmatic navigator gated and tracked scan. RESULTS No significant differences (P > 0.01) were found between the proposed method and the gated and tracked scan for coronary lumen, despite an average improvement in scan efficiency to 96% from 59%. Significant differences (P < 0.01) were found in right coronary artery vessel wall thickness, right coronary artery vessel wall sharpness, and vessel wall visual score between the proposed method and TC. CONCLUSION The feasibility of a highly efficient motion correction framework for simultaneous whole-heart coronary lumen and vessel wall has been demonstrated. Magn Reson Med 77:1894-1908, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
منابع مشابه
Technical note: Accelerated nonrigid motion‐compensated isotropic 3D coronary MR angiography
PURPOSE To develop an accelerated and nonrigid motion-compensated technique for efficient isotropic 3D whole-heart coronary magnetic resonance angiography (CMRA) with Cartesian acquisition. METHODS Highly efficient whole-heart 3D CMRA was achieved by combining image reconstruction from undersampled data using compressed sensing (CS) with a nonrigid motion compensation framework. Undersampled ...
متن کاملAccelerated isotropic resolution 3D image-based navigators for coronary MR angiography
PURPOSE To develop a method for acquiring whole-heart 3D image-based navigators (iNAVs) with isotropic resolution for tracking and correction of localized motion in coronary magnetic resonance angiography (CMRA). METHODS To monitor motion in all regions of the heart during a free-breathing scan, a variable-density cones trajectory was designed to collect a 3D iNAV every heartbeat in 176 ms wi...
متن کاملNonrigid autofocus motion correction for coronary MR angiography with a 3D cones trajectory.
PURPOSE To implement a nonrigid autofocus motion correction technique to improve respiratory motion correction of free-breathing whole-heart coronary magnetic resonance angiography acquisitions using an image-navigated 3D cones sequence. METHODS 2D image navigators acquired every heartbeat are used to measure superior-inferior, anterior-posterior, and right-left translation of the heart durin...
متن کاملHigh resolution 3D spiral coronary vessel wall imaging with >99% respiratory efficiency using beat to beat respiratory motion correction: quantitative comparison with navigator gated 2D spiral and turbo spin echo imaging
Introduction: Dark blood coronary artery wall imaging has demonstrated the ability to detect vessel wall thickening in subjects with non-significant coronary heart disease [1]. For high resolution imaging, studies are generally performed with diaphragmatic navigator gating which has an inherently low respiratory efficiency (RE) and is further compromised by respiratory drift through the long ac...
متن کاملMotion Corrected 3D Whole-Heart Vessel Wall Imaging
Background Coronary atherosclerosis is not necessarily stenotic, due to outward remodeling of the vessel wall. Plaque burden correlates with risk of coronary disease (Kubo et al, J Am Coll Cardiol 2007) and direct visualization is desired. A 3D flow independent approach for vessel wall imaging was proposed recently (Andia et al, MRM 2013), based on subtraction of data with (T2prep(+)) and witho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 77 شماره
صفحات -
تاریخ انتشار 2017